The CALIS Procedure Covariance Structure Analysis: Model and Initial Values

Modeling Information			
Maximum Likelihood Estimation			
SASDATA.HSB2			
200			
200			
200			
PATH			
Covariances			

Variables in the Model			
Endogenous Manifest math science			
	Latent		
Exogenous	Manifest	read write	
	Latent		

Number of Endogenous Variables = 2 Number of Exogenous Variables = 2

Initial Estimates for PATH List				
Path Parameter Estimate				
read	===>	science	_Parm1	
read	===>	math	_Parm2	
write	===>	science	_Parm3	
write	===>	math	_Parm4	
math	===>	science	_Parm5	

Initial Estimates for Variance Parameters						
Variance Type	Variable Parameter Estimate					
Exogenous	read _Add1					
	write _Add2					
Error	math	_Add3				
	science	_Add4				

NOTE: Parameters with prefix '_Add' are added by PROC CALIS.

Endogenous variables are dependent variables - or variables which have arrows going into them.

Exogenous variables are independent variables - or variables which have NO arrows going into them

This section shows you what parameters SAS will calculate based on your model.

We have a parameter for each path

and we will have a parameter for each box - a measure of error or variation

The CALIS Procedure **Covariance Structure Analysis: Model and Initial Values**

Initial Estimates for Covariances Among Exogenous Variables			
Var1 Var2 Parameter		Parameter	Estimate
write	read	Add5	

NOTE: Parameters with prefix '_Add' are added by PROC CALIS.

This is the last parameter - a measure of the association/ relationship/or variation shared between the 2 independent variables: WRITE and READ

The SAS System

The CALIS Procedure **Covariance Structure Analysis: Descriptive Statistics**

Simple Statistics				
v	ariable	Mean	Std Dev	
read	reading score	52.23000	10.25294	
write	writing score	52.77500	9.47859	
math	math score	52.64500	9.36845	
science	science score	51.85000	9.90089	

Analysis results starts off with a description of the data - means and standard deviations

The CALIS Procedure **Covariance Structure Analysis: Optimization**

Initial Estimation Methods			
1	Observed Moments of Variables		
2	McDonald Method		
3	Two-Stage Least Squares		

Optimization Start Parameter Estimates				
N	Parameter	Estimate	Gradient	
1	_Parm1	0.30153	-3.824E-16	
2	_Parm2	0.41695	3.3406E-16	
3	_Parm3	0.20653	1.9742E-16	
4	_Parm4	0.34112	3.3406E-16	
5	_Parm5	0.31901	-7.271E-16	
6	_Add1	105.12271	-7.704E-34	
7	_Add2	89.84359	0	
8	_Add3	42.54028	-5.953E-18	
9	_Add4	49.01931	5.2937E-18	
10	_Add5	57.99673	2.6963E-33	
Value of Objective Function = 0				

The CALIS Procedure **Covariance Structure Analysis: Optimization**

Levenberg-Marquardt Optimization

Scaling Update of More (1978)

Parameter Estimates	10
Functions (Observations)	10

Optimization Start				
Active Constraints	0	Objective Function	0	
Max Abs Gradient Element	7.270939E-16	Radius	1	

Optimization Results			
Iterations	0	Function Calls	4
Jacobian Calls	1	Active Constraints	0
Objective Function	0	Max Abs Gradient Element	7.270939E-16
Lambda	0	Actual Over Pred Change	0
Radius	1		

Convergence criterion (ABSGCONV=0.00001) satisfied.

Fit Summary		
Chi-Square	0.0000	
Chi-Square DF	0	
Pr > Chi-Square		
Hoelter Critical N		
Standardized RMR (SRMR)	0.0000	
Adjusted GFI (AGFI)		
RMSEA Estimate		
Bentler Comparative Fit Index	1.0000	

FIT statistics - this is not very helpful with this sample data. Most popular FIT statistics for SEM are: SRMSR, AGFI, RMSEA, and CFI

GOALS:

- 1) chi-square statistic you want it to be non-significant - so a pvalue > 0.05
- 2) the SMRSR and RMSEA you want these to be small values aim for less than 0.05
- 3) AGFI and Bentler's CFI, the larger the better - goal is close to 1.

PATH List								
Path		Parameter	Estimate	Standard Error	t Value	Pr > t		
read	===>	science	_Parm1	0.30153	0.06816	4.4238	<.0001	
read	===>	math	_Parm2	0.41695	0.05620	7.4191	<.0001	
write	===>	science	_Parm3	0.20653	0.07023	2.9407	0.0033	
write	===>	math	_Parm4	0.34112	0.06079	5.6114	<.0001	
math	===>	science	_Parm5	0.31901	0.07610	4.1922	<.0001	

The first set of results are in the units of measure for each variable. In this example they are all percentages - so no worries. For your own data - be aware!!

Variance Parameters							
Variance Type Variable		Parameter	Estimate	Standard Error	t Value	Pr > t	
Exogenous	read	_Add1	105.12271	10.53865	9.9750	<.0001	
	write	_Add2	89.84359	9.00690	9.9750	<.0001	
Error	math	_Add3	42.54028	4.26470	9.9750	<.0001	
	science	_Add4	49.01931	4.91423	9.9750	<.0001	

Covariances Among Exogenous Variables							
Var1 Var2 Parameter Estimate Standard Error t Value Pr >					Pr > t		
write	read	_Add5	57.99673	8.02265	7.2291	<.0001	

Squared Multiple Correlations						
Variable Error Total Variance R-Square						
math	42.54028	87.76781	0.5153			
science	49.01931	98.02764	0.4999			

The R-square hear tells you how much of the overall variation in MATH is explained by ALL the other variables in the path model - so 51.5%

SCIENCE can be explained by ~50%

Stability Coefficient of Reciprocal Causation = 0

Stability Coefficient < 1

Total and Indirect Effects Converge

In order for the indirect effects results (seen later in this output) to be of value, you want this test to read that the stability coefficient is <1

Effects of read							
Effect / Std Error / t Value / p Value							
	Total Direct Indirect						
science	0.4345 0.0629 6.9046 <.0001	0.3015 0.0682 4.4238 <.0001	0.1330 0.0364 3.6499 0.000262				

Remember that there were 2 paths from READ to SCIENCE - the direct path and an indirect path through MATH. Both effects are listed here.

First check if the effect is significant - essentially different from 0, in both the direct and indirect this is the case.

We have a direct effect of 0.30 and an indirect effect of 0.13. Together the overall effect of READ on SCIENCE is 0.43

Effects of write							
Effect / Std Error / t Value / p Value							
	Total Direct Indirect						
science	0.3153 0.0681 4.6323 <.0001	0.2065 0.0702 2.9407 0.003274	0.1088 0.0324 3.3585 0.000784				

Interpret as above

Standardized Results for PATH List								
Path		Parameter	Estimate	Standard Error	t Value	Pr > t		
read	===>	science	_Parm1	0.31225	0.06919	4.5128	<.0001	
read	===>	math	_Parm2	0.45631	0.05793	7.8769	<.0001	
write	===>	science	_Parm3	0.19772	0.06676	2.9618	0.0031	
write	===>	math	_Parm4	0.34513	0.05977	5.7739	<.0001	
math	===>	science	_Parm5	0.30185	0.07073	4.2679	<.0001	

Standardized Results for Variance Parameters							
Variance Type	Variable	Parameter	Estimate	Standard Error	t Value	Pr > t	
Exogenous	read	_Add1	1.00000				
	write	_Add2	1.00000				
Error	math	_Add3	0.48469	0.04933	9.8257	<.0001	
	science	_Add4	0.50006	0.05013	9.9755	<.0001	

These are estimates of the error of each independent variable

Standardized Results for Covariances Among Exogenous Variables							
Var1	Var2	Parameter	Estimate	Standard Error	t Value	Pr > t	
write	read	_Add5	0.59678	0.04564	13.0752	<.0001	

These are the standardized effects in STD units

The first thing we will note when reading these results, is whether the effect is significant or not. Again - different from 0 and having an effect on the outcome variable SCIENCE in this case. Interpretation is similar to that of a correlation coefficient - ranges from -1 to 1.

This is the covariance of the variation shared between the 2 independent variables

Standardized Effects of read							
Effect / Std Error / t Value / p Value							
	Total Direct Indirect						
science	0.4500 0.0613 7.3450 <.0001	0.3123 0.0692 4.5128 <.0001	0.1377 0.0369 3.7366 0.000186				

Same as above - only these are the standardized effects

Standardized Effects of write							
Effect / Std Error / t Value / p Value							
	Total Direct Indirect						
science	0.3019 0.0637 4.7392 <.0001	0.1977 0.0668 2.9618 0.003059	0.1042 0.0305 3.4152 0.000637				

Same as above - only these are the standardized effects